数学教案-平行四边形面积的计算
作为一位杰出的教职工,就有可能用到教案,教案是教学活动的依据,有着重要的地位。优秀的教案都具备一些什么特点呢?以下是小编为大家收集的数学教案-平行四边形面积的计算,仅供参考,大家一起来看看吧。
数学教案-平行四边形面积的计算1
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学重点:
通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:
能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:
教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的`大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
数学教案-平行四边形面积的计算2
教学目标:
(一)知识方面
1.使学生理解并掌握平行四边形面积的计算公式。
2.能正确地计算平行四边形的面积。
(二)能力方面
1.通过操作,进一步发展学生思维能力。
2.培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
(三)德育方面
引导学生运用转化的思想探索规律,培养探索知识的兴趣。
教学重点:理解并掌握平行四边形面积的计算公式。
难点关键:理解平行四边形面积计算公式的推导过程。
教具:课件、实物投影仪。
学具:两个同样的平行四边形、剪刀、尺子。
教学步骤:
一、复习辅垫
1.出示一个长方形。
这是一个(长方形),它有什么特征?如果每个小方格为1平方厘米,这个长方形的面积是多少平方厘米?你是用什么方法得出来的?(板书:长方形的面积=长×宽)
2.出示不规则图形(1)、(2),
问:这个图形的面积是多少?你是怎么知道的?除了一个一个数之外,还有没有其他方法?(学生说割补的过程,电脑演示)
3.出示平形四边形。
问:这是一个(平形四边形),请同学们用数方格的方法数一数它的面积是多少。同学们发现这些方格中(有些是整格的,有些是不满一格的)不满一格的怎么办,请你想个办法。你怎么知道算半格?(学生说,电脑演示两个不满一格的拼成一个整格的过程)我们一起来数一数,先数什么?再数什么?这个平行四边形的面积是多少平方厘米?(电脑演示)
4.刚才我们用数方格的方法计算了平形四边形的面积,方不方便?如果是一个平形四边形的水塘呢?还能不能用数方格的方法来计算?我们能不能也像计算长方形的面积那样,找出平行四边形面积的计算方法呢?今天我们就一起来研究一下平行四边形的面积计算方法。(出示课题)
二、操作探究
1.动手操作
(1)提问:平行四边形的面积如果能转化成什么图形的面积我们就会求了?到底行不行,请你拿出平行四边形,试试看。(学生操作,教师巡视)
(2)做好的同学放好,思考这三个问题:
A你转化后的图形是不是长方形?
B这个长方形和原来的平行四边形之间有什么关系?
C由这些关系你能不能得出平行四边形面积的计算方法?
2.汇报总结
我们一起来看这三个问题。
(1)你转化后的图形是不是长方形?你是怎么转化的呢?谁能大胆的
上来说一说。
(2)你是沿着高剪开的,你是不是沿着高剪开的?为什么要沿着高剪
开呢?沿着底边上的高剪开,这个角是什么?(直角)长方形的四个角都是直角。所以只有沿着高剪开才能转化成长方形。
(3)电脑演示转化过程,教师口述。找出底,画高,剪开,平移,拼
补,转化成了长方形。
(4)这个长方形和原来的平形四边形之间有什么关系呢?平行四边形
转化成长方形后,面积有没有变化?长方形的面积和原来的平行四边形的面积怎么样?(板书:=)长方形的长和什么有关?(板书)长方形的宽和什么有关?(板书)从这个关系中,同学们发现了什么?(板书)谁再来完整的主一遍。(学生说,电脑演示)请学们看着这个板书自己说一说。
3.验证。这个公式到底对不对呢?打开书本对照一下。我们通过转化推导出来的'面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。
4.用字母表示。平行四边形的面积计算公式还可以用字母来表示。请同学们自学这一页的最后两段。汇报。
5.小结。从公式中我们可以知道要求平行四边形的面积,必须知道什么?齐读公式。
三、巩固发展
1.口算下列各题。
53分米
4厘米分3米
米
3厘米1.5米
2.选择合适的条件计算面积。(单位:厘米)
4
2.8
2.1
3
用公式计算需要知道哪两个条件,你能不能说得更准确一些?(底和相对应的高)
3.下面的平行四边形是2×4的请打勾。
224
24
44
2
4.学会了平行四边形的面积计算,可以解决实际生活的一些问题。出示例题。做一做。
5.出示中图地图。我们国家有三十几个省市自治区,其中这个是出西省,山西省的形状近视于一个什么图形?同学们想知道什么?要求山西省土地的面积,应该怎么办?经过测量底约为560千米,高约为280千米,请你计算一下它的面积约为多少平方千米?得数保留整万千米。
6.比较。
这两个平等四边形有没有关系?得出等底等高的平行四边形面积相等。那么这个平行四边形的面积呢?(电脑演示)
四、回故总结。
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积是怎样推导出来的?同学们,前面我们学习了长方形和正方形的面积计算,今天我们用转化的方法学习了平行四边行的面积计算,今后我们还要运用这种方法来学习三角形,梯形的面积计算。
板书设计
平行四边形面积的计算
旧知
长方形的面积=长×宽
割
补
平行四边形的面积=底×高
新知S=a×h
S=a・h
S=ah
数学教案-平行四边形面积的计算3
重点难点
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
教学准备(含资料辑录或图表绘制)
板书设计
平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×宽
所以平行四边形的面积=底×高
学生活动
一、导入
二、新授
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
3、(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:
①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:
①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
三角形、长方形、正方形、平行四边形、梯形......
长方形、正方形
把他们移动一下
把左边部分剪下移到右边
三、延伸
四、练习
③道斜边重合。
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的'长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
(2)学生操作,反馈交流。
(3)用字母表示面公式:S=ah(板书)
1、指导完成试一试:明确应用公式求平
相等
相等
相等
五、总结
六、课堂作业
行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
通过今天的学习有哪些收获?
回顾所学,感知收获
数学教案-平行四边形面积的计算4
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。(练习十六第4题)
4.90.75.4+2.640.250.87-0.49
530+2703.50.2542-98612
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的.面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1.95公顷,
再求共收小麦多少千克:70001.95=13650千克
⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十六第7题。
四、作业
练习十六第5、8、9、11题。
数学教案-平行四边形面积的计算5
教学内容:
九年义务教育教科书人教版第九册P 64-67
教学目的:
1.通过操作掌握平行四边形面积的计算方法并能解决实际问题。
2.通过剪、拼等活动培养学生的探索意识及主动探究的能力。
3.培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:平行四边形面积的计算方法
教学难点:平行四边形面积公式的推导过程
教具准备:课件、平行四边形图形、剪刀
教学过程:
一、创设情境,复习旧知,引入新知
师:黄山美景闻名于全国,黄山四绝更是我们黄山的骄傲,"温泉"是黄山四绝之一。黄山某宾馆利用当地温泉资源修建一个游泳池,(课件出示长方形游泳池的效果图和平面图)你能算出这个温泉的占地面积吗?(要求学生写出长方形面积公式)
老师来自于海南,海南也是一个美丽的地方,让我们一起来欣赏海南一处美丽风光。(课件播放录像:海南美丽风光-神州半岛)
师:这就是海南美丽的神州半岛。中信泰富公司准备对神州半岛进行开发。但开发之前,中信泰富公司的人员需要知道神州半岛的大概面积,你们能帮忙算出神州半岛的面积吗?
师:(课件显示:描出神州半岛边框--形成平行四边形)同学们神州半岛,从地图上看这个围成神州半岛,像我们以前学过的那种图形?怎样计算平行四边形的面积?请同学们大胆的猜一猜。
(评析:从学生熟悉的情境和图形入手,再引出学生陌生而熟悉的情境--海南岛中呈"平行四边形"形状的神州半岛,两个情境、两种图形前呼后应,不仅为新课的学习作好了过度,更重要的是拉近了"陌生"师生之间的情感距离。)
二、动手操作、验证猜想
1、师:大家猜得对不对呢?想不想自己亲自动手验证一下?
2、分组验证,请小组内的同学先商量打算怎样验证所提出的猜想,再利用手中学具和平行四边形进行验证。
3、讨论交流
(1)组内交流。先说一说自己的结论,再说是怎样验证的,组内互相补充。
(2)全班交流。以小组为单位汇报,有不同意见的小组可发表意见?(全班交流时,注意猜想错误小组的结果验证。)
(评析:这是新知识学习的重要环节,教师采取"大胆猜想-组内验证-全班交流"的手法,为学生提供了"做数学"的机会,让学生通过动脑想问题、动手验证问题、动口说明问题,使学生个体的手、口、脑都参与到教学过程之中,有效地激发了学生的学习积极性,同时通过师生、生生、群体之间的互动交流,化"静"的知识接受为"动"的知识建构,让学生在学习过程中充分地体验数学和经历数学的形成过程。)
三、深入探究,内化知识
1、看图思考
(1)为什么要转化成长方形?
(2)为什么要沿高剪开?不沿高剪开行不行?
(评析:通过这样深入的探究,将学生为动而动的状态引向有效的"做数学"活动,不仅有效地渗透了数学的转化思想,而且更好地培养了学生的多向思维和发散思维的能力。)
2、我们一起再来回顾一下同学们的验证过程。(师小结并用课件演示平行四边形面积的推导过程)
(评析:这样的重复,有利于突出本课教学中的重点、突破难点。)
3、看书质疑。
(1)对于平行四边形的面积计算方法你还有疑问吗?
(2)请同学们认真阅读64至65页内容,通过看书你又知道了什么?还有什么问题?
(评析:课本乃学生学习中的重要媒体之一,要充分地发挥这个重要媒体的作用,让学生通过"看书质疑",既有利于培养学生通过阅读数学材料获取知识的能力,又有利于学生掌握学习方法。)
四、反馈练习,发展思维
1、基本练习--计算平行四边形图形的面积。
2、变式练习--谁做得对?
3、应用练习
(1)计算体育馆天花板上平行四边形的面积。
(2)解决神州半岛的面积计算问题(课件出示神州半岛地形图,并给出数据)。指名口答。
4、拓展练习--小小设计师
学校教学楼前要建造一个面积是12平方米的平行四边形花坛,请你帮学校设计一下(要求它的底和高均为整米数),可以有几种方案?
(评析:通过不同层次的训练,不但巩固了所学知识,拓宽了学生的知识面,发展了学生的思维,培养了学生的应用意识,加深了学生对知识的内化和记忆,而且通过前后相呼应的教学情节,也体现了教学设计的完整性。)
五、反思一下刚才我们的学习过程,你有什么收获?
总评:
本设计最显着的特点是为学生活动留有了充足的时间和空间,确立了学生的`主体地位。课之开始,借景勾通,拉近了"陌生"师生之间的情感距离,从而有效地调动了学生的主体欲望。课之展开,以体验为主线,为学生的研究活动提供了广阔的时空,学生在充足的时间里发现问题、提出问题、研究问题,实实在在地经历了有意义的"做数学"过程,使学生对所学知识不仅知其然,更知其所以然。并且在构建数学模型、知识动态生成的思维过程中,把数学方法作为进一步学习的基础,重视数学方法的训练,逐步形成良好的思维方式和运用数学的意识。课之巩固,既夯实"双基",又注重思维能力的培养。让学生在综合运用所学知识和技能解决问题中,形成解决问题的一些基本策略,发展了学生的应用意识、实践能力与创新精神。总之,整个教学过程本着以学生的发展为本的教学理念,让学生经历自主探究、独立思考、合作交流等活动,获得了成功的体验,锻炼了克服困难的意志,学生的学习积极性和主动性得到了充分地发挥,同时也树立了自信心。
数学教案-平行四边形面积的计算6
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的`方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×hS=ah或S=ah
课后反思:
数学教案-平行四边形面积的计算7
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的`长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
数学教案-平行四边形面积的计算8
教学内容:
平行四边形面积计算的练习(第74~75页练习十七第4~9题。)
教学目的:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教学准备:
实物投影仪等。
教学过程:
一、基本练习
1.口算。
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
2.平行四边形的面积是什么?它是怎样推导出来的.?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.已知一个平行四边形的面积是28平方米和底是7米,求高。
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习(略)
练习课
练习内容:
数学教案-平行四边形面积的计算9
教学内容:九义教材数学第九册第70~72页,练习十七第1~3题。
素质教育目标:
(一)知识教学点
1.使学生理解并掌握平行四边形面积的计算公式。
2.能正确地计算平行四边形的面积。
(二)能力训练点
1.通过操作,进一步发展学生思维能力。
2.培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。
(三)德育渗透点
引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。
教具学具准备:
1.活动长方形支架。
2.平行四边形演示课件。
3.每个学生准备一张画上高的平行四边形纸板和剪刀。
教学步骤
一、铺垫孕伏1.出示活动长方形支架。提问:这是什么形体?怎样计算长方形的面积?板书:长方形的面积=长×宽
2.把活动长方形支架对角一拉,使它变成平行四边形。提问:现在还是长方形吗?什么叫平行四边形?你能指出它的底和高吗?
二、探究新知
1.导入:我们学过长方形面积的计算。平行四边形的面积该怎样计算呢?这节课我们就来共同研究“平行四边形面积的计算”。板书课题。
2.用数方格的方法计算平行四边形的面积。
(1)打开书71页齐读第二段。
(2)指名到实物投影仪上数。我先数......,它是......平方厘米;再数......,它是......平方厘米;两部分合起来是......平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(5)从前面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来很麻烦,且不精确。特别是较大的平行四边形,如花园那么大就不好数了。我们能不能也像计算长方形的面积那样,找出平行四边形面积的计算方法呢?
3、通过操作,将平行四边形转化成长方形。
(1)、提问。能不能用剪拼的办法将同学们手中的平行四边形转化成长方形呢?试试看。(每个只准剪一次。)
(2)、提问。通过剪拼你发现了什么规律?任何一个平行四边形都可以转化成一个长方形。(只有沿平行四边形的高剪下。)在转化的过程中,怎样按一定的规律来做呢?(老师演示)
A.先沿着平行四边形的高剪下左边的直角三角形。
B.左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
C.移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边向右慢慢移动,到两个斜边重合为止。
D、同学们像老师刚才演示那样,平移一次。(老师巡视指导)
E、投影再显示平移过程,加深认识。
4、归纳整理
(1)、投影显示两个图形,比较。你发现了什么?请填71页书空。
(2)、平行四边形转化成长方形后,面积有没有变化?长方形的面积和原来的平行四边形的面积怎么样?(板书)
(3)、这个长方形的长与平行四边形的底怎么样?
(4)、这个长方形的宽与平行四边形的高怎么样?
(5)、这个长方形的面积怎么求?那么平行四边形的面积呢?(因为......所以......板书)
(6)、请学生口述推导过程。同时投影演示。
5教学字母公式
(1)、介绍字母的意义及读法。(板书S=a×h)
(2)、说明在含有字母的.式子里,字母和字母中间的乘号可以记作“ ”,也可以省略不写。(板书s=a?h或s=ah)
(3)、提问:计算平行四边形的面积,需要知道那些条件?
6、应用公式计算
(1)投影显示72页例题
A、读题,理解题意。
B、学生试做,提示得数保留整数。
C、订正。老师出示正确答案。提问:此题根据什么这样列式?
(2)、完成72页“做一做”第1、2题。
A、抽两个同学在投影片上做,其余的在作业本上做。B、订正时提问:计算时注意那些问题?老师出示正确答案。
三、巩固发展
1、填空(出示投影)平行四边形面积计算公式的推导。任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。
2、比较。73页第6题(出示投影)强调等底等高的平行四边形面积相等。
3、判断。我们开始演示的活动长方形支架的面积和由它变成的平行四边形的面积相等吗?为什么?
四、全课总结。
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积是怎样推导出来的?
五、布置作业
练习十七第2、3题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=a・h或S=ah
点评:该课整个过程从动手操作→观察思考→归纳慨括,遵循了概念教学的原则和学生的认识规律。通过操作演示再现已有的表象,又借助已有的知识经验,通过观察、分析、比较、推理、概括出平行四边形的面积公式,教师适当点拨,使学生的思维始终处于积极状态,成为学习的主人。
数学教案-平行四边形面积的计算10
教学内容
使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
教学目标
理解公式并正确计算平行四边形的面积
知识重点
理解平行四边形面积公式的推导过程
教学难点
教学过程
教学方法和手段
引入
1、什么是面积?2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
教学过程
一、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、讲授新课
(一)、数方格法
用课件投影出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的'梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
3、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
4、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
5、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“?”,写成a?h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a?h,或者S=ah。
(6)完成第81页中间的“填空”。
6、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
强化:求平行四边形的面积必须知道哪两个条件?(底和高)
小结与作业
课堂小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
课后追记
本课利用数格子和割补法来求平行四边形的面积。利用“割”或者“补”的方法,或者两者配合使用是将未知图形化成已知图形的一种常用手段和方法。这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。
数学教案-平行四边形面积的计算11
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的'观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
数学教案-平行四边形面积的计算12
教学目标
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点
理解公式并正确计算平行四边形的面积.
教学难点
理解平行四边形面积公式的推导过程.
教学过程
复习引入
(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).
(二)观察老师出示的几个平行四边形,指出它的底和高.
(三)教师出示一个长方形和一个平行四边形.
1.猜测:哪一个图形面积比较大?大多少平方厘米呢?
2.要想我们准确的答案,就要用到今天所学的`知识――“平行四边形面积的计算”
板书课题:平行四边形面积的计算
二、指导探究
(一)数方格方法
1.小组合作讨论:
(1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
(2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
(3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
(4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
2.集体订正
3.请同学评价一下用数方格的方法求平行四边形的面积.
学生:麻烦,有局限性.
(二)探索平行四边形面积的计算公式.
1.教师谈话
不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.
2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
3.学生到前面演示转化的方法.
4.演示课件:平行四边形的面积
5.组织学生讨论:
(1)平行四边形和转化后的长方形有什么关系?
(2)怎样计算平行四边形的面积?为什么?
(3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?
(三)应用
例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.8×3.5≈17(平方米)
答:它的面积约是17平方米.
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
(一)列式并计算面积
1.底=8厘米,高=5厘米,
2.底=10米,高=4米,
3.底=20分米,高=7分米
(二)说出下面每个平行四边形的底和高,计算它们的面积.
(三)应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
(四)量出你手里平行四边形学具的底和高,并计算出它的面积.
教案点评:
该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。
本文链接:http://www.vanbs.com/v-34-5897.html数学教案-平行四边形面积的计算
相关文章:
《卖羊》阅读练习题及答案11-16
相思的古诗《折桂令》赏析07-20
英文自我介绍英文简历自我介绍01-14
敬老院宣传标语口号10-19
学生会面试自我介绍简短优秀10-15
外媒:国内发展和国际参与协同共振 中国全球声誉不断提升07-04
香山科学会议聚焦中新医疗科研合作06-27
《西游记》摘抄句子10-19
治愈系晚安问候语语录08-10
对心爱的人暖心的话08-02
西游记精彩句子07-26
物业个人工作总结感悟11-22
建筑公司对个人委托书06-23
履职承诺书08-20
业务办理个人授权委托书08-10
幼儿园教师音乐素养培训心得体会11-05
春节趣事小学生作文07-05
粉笔六年级作文12-10
劳动节的作文900字11-14
扩写《三个猴孩子》优秀作文700字11-09
2025上半年浙江幼儿和中小学教师资格证成绩查询入口:http://ntce.neea.edu.cn/ntce/04-21