据最新一期《自然·生物医学工程》杂志报道,日本京都大学研究团队开发出一种能同时模拟肺部近端气道与远端肺泡的新型“肺芯片”系统,有望更精确地研究呼吸道病毒的感染机制。
呼吸道病毒感染曾多次引发全球性大流行,给医疗系统带来沉重负担。这类病毒会对肺部造成严重损伤,特别是肺部的近端区域(气道)和远端区域(肺泡)。由于肺部不同区域对感染的反应存在差异且机制复杂,传统的动物模型或简单的体外系统难以准确复现这一过程。
为解决上述问题,日本研究团队开发出一款微型生理系统。他们通过诱导多能干细胞(iPSC)技术,诱导分化出具有功能性的肺上皮细胞,再配合类器官工程与微流控平台,重建了人体肺部气道与肺泡的三维结构与微环境。
研究团队利用iPSC构建的“肺芯片”能模拟气道和肺泡在病毒感染时的不同反应,且细胞来源一致,有效减少了个体差异带来的干扰。这一成果为研究组织与病毒特异性的疾病机制提供了更精准的平台,也有助于新药的评估和筛选。
这项研究成果不仅适用于肺部模型,也为其他人体器官及多器官系统的构建提供了重要参考,有助揭示器官间的相互作用机制。微型生理系统与iPSC技术的结合,将为复杂疾病模型的开发带来全新思路。
据最新一期《自然·生物医学工程》杂志报道,日本京都大学研究团队开发出一种能同时模拟肺部近端气道与远端肺泡的新型“肺芯片”系统,有望更精确地研究呼吸道病毒的感染机制。
呼吸道病毒感染曾多次引发全球性大流行,给医疗系统带来沉重负担。这类病毒会对肺部造成严重损伤,特别是肺部的近端区域(气道)和远端区域(肺泡)。由于肺部不同区域对感染的反应存在差异且机制复杂,传统的动物模型或简单的体外系统难以准确复现这一过程。
为解决上述问题,日本研究团队开发出一款微型生理系统。他们通过诱导多能干细胞(iPSC)技术,诱导分化出具有功能性的肺上皮细胞,再配合类器官工程与微流控平台,重建了人体肺部气道与肺泡的三维结构与微环境。
研究团队利用iPSC构建的“肺芯片”能模拟气道和肺泡在病毒感染时的不同反应,且细胞来源一致,有效减少了个体差异带来的干扰。这一成果为研究组织与病毒特异性的疾病机制提供了更精准的平台,也有助于新药的评估和筛选。
这项研究成果不仅适用于肺部模型,也为其他人体器官及多器官系统的构建提供了重要参考,有助揭示器官间的相互作用机制。微型生理系统与iPSC技术的结合,将为复杂疾病模型的开发带来全新思路。
本文链接:http://www.vanbs.com/v-146-3961.html“肺芯片”有望模拟呼吸道病毒感染过程
相关文章:
对情人说的话 可以让他感动的话09-13
成本会计工作计划汇报01-15
汽车销售员个人年终总结10-23
离婚协议书幽默风趣版11-16
ktv股东合作协议书09-13
大学军训广播稿参考12-31
家长会演讲稿11-16
淘宝个人简历10-26
最新教师节老教师发言稿10-05
描写包粽子作文06-02
我的心愿六年级作文600字01-21
改写回乡偶书作文11-09
美丽的家乡写景作文07-23
2024下半年甘肃教资面试准考证打印入口(已开通)12-09
有什么比较好的大学生上的网课平台么?12-05
文科专业哪些比较容易就业11-25
长沙艺术职业学校是职校吗10-06
一年级学生期末评语【优秀28篇】05-15
教学设计培训心得体会02-12
学习雷锋好榜样文案05-08
开学文案简短精辟02-12